skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Buchler, Norbou"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. State-of-the-art in network science of teams offers effective recommendation methods to answer questions like who is the best replacement, what is the best team expansion strategy, but lacks intuitive ways to explain why the optimization algorithm gives the specific recommendation for a given team optimization scenario. To tackle this problem, we develop an interactive prototype system, Extra, as the first step towards addressing such a sense-making challenge, through the lens of the underlying network where teams embed, to explain the team recommendation results. The main advantages are (1) Algorithm efficacy: we propose an effective and fast algorithm to explain random walk graph kernel, the central technique for networked team recommendation; (2) Intuitive visual explanation: we present intuitive visual analysis of the recommendation results, which can help users better understand the rationality of the underlying team recommendation algorithm. 
    more » « less
  2. The PART-WHOLE relationship routinely finds itself in many disciplines, ranging from collaborative teams, crowdsourcing, autonomous systems to networked systems. From the algorithmic perspective, the existing work has primarily focused on predicting the outcomes of the whole and parts, by either separate models or linear joint models, which assume the outcome of the parts has a linear and independent effect on the outcome of the whole. In this paper, we propose a joint predictive method named PAROLE to simultaneously and mutually predict the part and whole outcomes. The proposed method offers two distinct advantages over the existing work. First (Model Generality), we formulate joint PART-WHOLE outcome prediction as a generic optimization problem, which is able to encode a variety of complex relationships between the outcome of the whole and parts, beyond the linear independence assumption. Second (Algorithm Efficacy), we propose an effective and efficient block coordinate descent algorithm, which is able to find the coordinate-wise optimum with a linear complexity in both time and space. Extensive empirical evaluations on real-world datasets demonstrate that the proposed PAROLE (1) leads to consistent prediction performance improvement by modeling the non-linear part-whole relationship as well as part-part interdependency, and (2) scales linearly in terms of the size of the training dataset. 
    more » « less